

0964-1955(95)00017-8

Review

New Insights into the Pathogenesis of Warthin's Tumour

O. Gallo

INTRODUCTION

WARTHIN'S TUMOUR (WT) is a relatively common benign epithelial tumour of the salivary gland comprising 5-15% of all parotid neoplasms [1]. After the initial reports by Hildebrand in 1895 [2], much has been written on WT, as this parotid neoplasm continues to fascinate as well as provoke controversy among clinicians, pathologists and other investigators so that even its neoplastic nature is a matter for discussion [3]. This controversy is multifaceted and relates to all aspects of the tumour from its historical beginnings to its histogenesis, pathogenesis and treatment. There are several reasons for such contention, but the most important ones reside in the "unique" histology of WT, characterised by a lymphoepithelial proliferation. In fact, WT consists of two components: a double layer of oxyphilic/oncocytic epithelium and a lymphoid stroma containing lymph follicles. The origin of the epithelial cells and the nature of the lymphoid stroma in WT remain largely unsettled. Most authors agree that the epithelial compartment is derived from the ductal cells [3-5], while it is generally accepted that the lymphoid component is the expression of normal activated lymphoid tissue, characterised by a polytypic B-cell proliferation [3, 6, 7]. The interpretation of the lymphoid stroma as a normal but active lymphoid tissue is also supported by the well-described development of malignant lymphomas in WT [3, 8-11].

HISTOGENESIS OF WT

In the past, clinicians and pathologists elaborated many theories on the histogenesis of WT in an attempt to elucidate the mechanisms responsible for the lymphoepithelial coexistence, characteristic of this parotid neoplasm. The initial theories of Albrecth and Arzt [12], and Thompson and Bryant [13] postulated that WT develops from heterotopic salivary duct epithelium within lymph nodes in the parotid gland, in the periparotid area, or in the neck. This hypothesis was based on the histological and ultrastructural features of the epithelial component of WT, resembling salivary duct cells and was further supported by Dietert who in a histological review of parotid gland specimens from 137 patients with WT was able to identify the WT in an intra-lymphnodal location in 72% of

Correspondence to O. Gallo at the Institute of Otolaryngology Head and Neck Surgery, University of Florence, Florence, Italy. Received 28 Oct. 1994; provisionally accepted 26 Jan. 1995; revised manuscript received 6 Mar. 1995.

cases [14]. Thus, they postulated that, because of fetal or postfetal disturbance in the ontogenesis of the parotid gland, in association with the enclosure of lymph nodes in the gland, groups of salivary ducts and acini may be included in such lymph nodes [3]. The possible late neoplastic proliferation of this heterotopic parotid ductal epithelium could justify the development of WT.

In 1971, on the basis of morphological analogies between the histological features of WT and those observed in several organo-specific immune disorders, particularly in Hashimoto's thyroiditis, Allegra first postulated that WT might not be a true neoplasm and suggested the involvement of a cellmediated immune mechanism of the delayed hypersensitivity type in the pathogenesis of such a tumour [15]. More precisely, he suggested that in the early stages of the disease the epithelial cells of the striated ducts undergo oxyphilic metaplasia and produce apocrine secretory activity. The metaplasia triggers proliferation of duct epithelium, characteristic of WT and is followed by an intense stromal reaction with involvement of immune cells. The factor(s) responsible for the initial metaplastic event was unclear. More recently, based on the close association between cigarette smoking and WT, several authors have postulated that tobacco smoke could be involved in the induction of metaplasia in epithelial ductal cells [16] responsible for epithelial and, then, lymphoid cells proliferation. The immune hypothesis has recently been further supported by Ogawa et al. [17], who immunohistochemically demonstrated the expression of class II human leucocyte antigens (HLA) on the epithelial component of WT, showing clear analogies with the salivary gland epithelium of the most common organ-specific autoimmune disease involving salivary and lacrimal glands, i.e. Sjögren syndrome (SS) [18]. On the basis of these findings and of the production of interleukin-1 by epithelial cells of WT, the Japanese authors suggested that epithelial cells of WT possess the potential for acting as an antigen-presenting cell (APC) being able to activate lymphoid stroma of WT. In fact, they hypothesised that in WT an immune reaction against unknown antigens presented to T-lymphocytes by HLA-DR positive epithelial cells takes place. Thus, they suggested that the expression of HLA-DR antigens and interleukin-1 production by an epithelial component of WT could specifically activate lymphoid cells within the salivary gland. However, no clear explanations about the mechanisms responsible for the

212 O. Gallo

aberrant HLA-DR expression by WT epithelial cells and the possible antigens involved in the activation of the lymphoid stroma were done.

HLA ANTIGENS, VIRUS INFECTION AND SALIVARY GLAND AUTOIMMUNE DISEASES

Based on their tissue distribution and structure, HLA antigens have been divided into two classes: class I antigens, also termed the classic histocompatibility antigens; class II antigens, including HLA-D, -DR, -DQ, and DP antigens. HLA-A, -B, and -C antigens (class I antigens) are found on virtually every human cells; whereas HLA class II antigens are found chiefly on the surface of the immunocompetent cells, including macrophages/monocytes, activated T lymphocytes and particularly B lymphocytes. The function of HLA class II antigens is to regulate the interactions between immunocompetent cells, controlling all the mechanisms of recognition and co-operation in the immune system, thus restricted at the HLA system [19].

The detection of HLA-DR class II antigens on residing cells that do not normally express these antigens has been reported in various nonlymphoid cells with signs of functional activation, such as vascular endothelial cells, fibroblasts, and various epithelial cells, particularly in organ-specific autoimmune diseases [20–22]. This phenomenon has been explained in different ways. Recently, most authors postulated that the aberrant MHC antigen expression might be linked to the effects of cytokines and/or other substances released after viral infection by epithelial cells [18]. Accordingly, it is well known that virus infection usually leads to the autocrine production of interferons, the major inducers of MHC antigens, by infected cells [17–20].

In several autoimmune disorders, such as Grave's disease, Bottazzo *et al.* [23, 24] postulated that viral infection by eliciting the production of interferons, could activate the ectopic expression of HLA-DR antigens on thyroid cells with the possible recognition of thyroid autoantigens on their surface by T-helper cells, thus triggering an autoimmune reaction. An analogous mechanism has also been postulated in the pathogenesis of other autoimmune organ-specific diseases, including salivary gland diseases.

Among the human viruses, the Epstein–Barr virus (EBV) has been the most prominently considered as a cause of autoimmune diseases because of its ubiquity, persistence and ability to act on the immune system.

A possible role of EBV infection in the activation of autoimmune reactions also in salivary glands has been postulated by the detection of EBV-DNA in epithelial cells from major and minor salivary and lacrimal gland biopsies of SS patients [25–28]. In fact, Fox and associates first reported ductal epithelial staining with anti EBV Early Antigen-D (clone R3) antibodies in eight of 14, and EBV gp350/220specific antibodies in two of 14 salivary gland biopsies from SS patients, and zero of 10 control glands [25]. Furthermore, Saito et al. amplified EBV genomic sequences in 78% of SS gland biopsies as compared to 13% of biopsies from normal controls [26]. Using PCR, Mariette et al. detected EBV DNA in 86% of minor salivary gland biopsies from primary SS patients, 60% in secondary SS patients and 29% of normal controls [27]. Also using PCR, Deacon and associates reported the detection of EBV-DNA in 90% of SS minor salivary gland biopsies and in 70% of normal salivary gland biopsies ascontrol [28]. Moreover, more recently Tateishi *et al.* reported the spontaneous massive production of EBV by lymphoblastoid cell lines obtained from peripheral blood mononuclear cells of patients with SS [29]. Taken together, these data strongly suggest a central role of EBV in the pathogenesis of SS. In fact, it is possible that in predisposed subjects ductal epithelial cells, after EBV infection leading to aberrant HLA-DR expression, may be involved in the presentation of EBV-associated antigens to immune T-cells acting as APC, thus triggering an autoimmune reaction [30, 31]. However, because of the detection of EBV-DNA in normal salivary glands from seropositive individuals [32], the exact role of EBV in SS aetiopathogenesis is still controversial.

EPSTEIN-BARR VIRUS AND WT

EBV is the causative agent of infectious mononucleosis, Burkitt's lymphoma and nasopharyngeal undifferentiated carcinoma [33, 34] and is also implicated in B-cell lymphomas and in lymphoproliferative disorders, particularly in immunosuppressed and AIDS patients [33–36].

The main portal of entry of the virus in humans is the oropharynx, where the virus replicates in many epithelial elements such as acinar and ductal cells of the parotid and other salivary glands, and buccal and pharyngeal epithelial cells [32, 34, 37, 38]. In salivary glands the target of the virus seems to be the ductal epithelium, which may consistently express the C3d/EBV receptor (CR 2/CD21) of B lymphocytes [28]. EBV is ubiquitous and detectable in saliva of apparently healthy subjects [39]. The salivary glands are involved in the EBV primary infection and may constitute a virus reservoir for latent EBV that periodically becomes reactivated [32, 34], as evidenced by increased viral DNA in the saliva and an increased number of circulating B lymphocytes containing EBV genome in patients with some autoimmune disease, including SS patients and rheumatoid arthritis [25, 31].

The detection of clonal episomal EBV genomes and EBV-RNA transcripts in undifferentiated carcinomas of the salivary gland in American Eskimos and Greenlanders [40–42] and, more recently, by our group in Caucasians [43], also suggests a transforming role of EBV in parotid and salivary glands.

More recently, Pflugfelder et al. [44] have reported the detection of EBV-DNA in 86%, using ISH, and in 88%, using PCR, of intraductal epithelia and B lymphocytes of lacrimal gland biopsies from SS suggesting a central role of EBV in the pathogenesis of lacrimal gland lymphocytic proliferation associated to SS. The lacrimal gland immunopathology of SS consists of a proliferation mainly of B lymphocytes surrounding epithelial ducts and islands [44], in contrast to the predominant T lymphocyte proliferation of SS salivary glands.

Similar to the immunopathology of lacrimal glands of SS and to other EBV-associated neoplasias [45, 46], a lymphoepithelial pathology is also characteristic of WT. Thus, the lymphoepithelial pathology of WT clearly shows several analogies with SS, including the aberrant expression of HLA-DR on the epithelial cell surface.

The biologic properties of EBV (activation and immortalisation of B lymphocytes, and interactions with epithelial cells, particularly salivary ductal cells) on the one hand, and the above-mentioned analogies between WT and SS on the other,

prompted our group to investigate WT of the parotid gland for the presence of EBV-DNA sequences, using a non-radioactive biotinvlated EBV-DNA (BamHI-W fragment) probe and an in situ hybridisation (ISH) technique [47, 48]. Our results first indicate that the EBV genome was present in the cytoplasm of neoplastic oxyphilic cells in a significant number of multiple/ bilateral WT (86.7%), whereas the EBV genome was documented only occasionally in solitary WT (16.7%). Moreover, the EBV genome was often detected in the cytoplasm of ductal cells (75% of bilateral WT and 33.3% of solitary WT) and occasionally of acinar cells (16.7% of both multiple/bilateral and solitary WT) of the residual normal salivary gland tissue surrounding WT. Although the results of these studies could be influenced by the possible false positive staining of ductal cells due to the endogenous biotin and alkaline phosphatase, the possible role of EBV in WT pathogenesis has been further supported by preliminary results of Taira et al. [49]. These authors in fact reported the detection of EBV-DNA in all of the seven cases of WT analysed, using PCR. In spite of higher sensitivity of PCR compared to ISH, our study suggests the possible localisation of the EBV genome in the cytoplasm of epithelial cells and not in the lymphoid stroma of WT. Although the possible co-infection of B-cells in WT cannot be excluded by ISH technique, the detection of EBV-DNA in epithelial cells of WT might justify their proliferation and typical features, and in addition the aberrant expression of HLA-DR antigens on their surface. All together, these data could suggest a pathogenetic role of EBV for WT.

More recently, a retrospective review of clinical records of 140 patients affected by WT in comparison to clinical data from 380 patients with pleomorphic adenoma, the most common parotid gland neoplasm, surgically treated during 1973–1993 at the ENT Clinic of the University of Florence evidenced a higher incidence of autoimmune disorders, particularly organ-specific diseases (i.e. IDDM, Hashimoto's thyroditis) in WT patients than in patients with pleomorphic adenomas (32% versus 4.4%, OR=8.1, P<0.05) [50]. In addition, in the sera of 9 further consecutive patients with WT recently treated, we detected significantly higher levels of EBV-VCA-IgG and EBV-EA-IgG than those found in the sera from 20 patients with pleomorphic adenoma or from 20 healthy subjects (P<0.001), confirming the original observations of Taira et al. [49].

All together these findings could indicate a role of EBV in WT aetiopathogenesis. In fact, because of its possible pathogenetic role in several autoimmune diseases [31], it is possible to postulate that EBV could be involved in the pathogenesis of both WT and autoimmune disorders frequently associated in WT patients.

Because of the well-known association between HLA antigen(s) and autoimmune diseases, including SS (HLA B8, DR3, DW52a, DQw2 haplotype strongly associated with primary SS) [51], we investigated a possible association between HLA antigen(s) and WT. In our WT population without autoimmune diseases, a statistically significant association between HLA-DR6 antigen and WT (P<0.05) was found (unpublished data), suggesting a genetic predisposition to develop WT. The exact significance of such an association is still unclear, but according to other HLA associations [52], HLA-DR6 positive subjects could be associated with a decreased efficiency of the immune system, particularly in its anti-EBV activity.

In conclusion, in predisposed individuals EBV in latent sites of infection, such as the parotid gland [53], could infect ductal

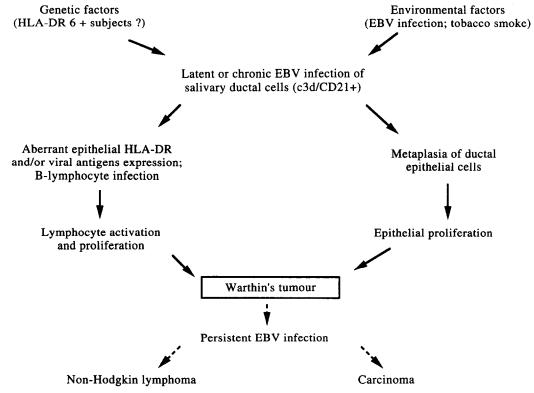


Fig. 1. The hypothesis of Warthin's tumour pathogenesis.

214 O. Gallo

epithelial cells. This would induce the release of cytokines, in particular interferon-gamma, by infected cells, which in turn would induce HLA-DR expression by epithelial cells. EBV gene products and/or cytokine release by infected cells may activate lymphoid tissue or stroma within the parotid gland and result in a polyclonal B-cell response. The possibility of developing malignant lymphomas in both SS [54] and WT [8–11], and the well-known involvement of EBV in the pathogenesis of generalised lymphoreticular malignant diseases [45, 46], further support this hypothesis (Fig. 1).

- Thackray AC, Lucas RB. Tumors of the major salivary glands. In Atlas of Tumor Pathology, second series. Washington, DC: Armed Forces Institute of Pathology 1974, Vol. 10, 40-55.
- Hildebrand O. Uber angeborene epitheliale cysten und Fisteln des Halses. Arch Klin Chir 1895, 49, 167–206.
- Chapnik JS. The controversy of Warthin's tumor. Laryngoscope 1983, 93, 695-716.
- Born IA, Schwechheimer K, Maier H, Otto HF. Cytokeratin expression in normal salivary glands and in cystoadenolymphomas demonstrated by monoclonal antibodies against selective cytokeratin polypeptides. Virchows Archiv A Pathol Anat 1987, 41, 583-589.
- Takahashi H, Tsuda N, Tezuka F, Okabe H. Difference of immunohistochemical reactions in epithelial cells of adenolymphoma. J Oral Pathol 1988, 17, 282-292.
- Caselitz J, Salfelder A, Seifert G. Adenolymphoma: an immunohistochemical study with monoclonal antibodies against lymphocyte antigens. J Oral Pathol 1984, 13, 438–447.
- Ruco LP, Rosai S, Remotti D. Immunohistology of adenolymphoma (Warthin's tumor): evidence for a role of vascularization in the organization of the lymphoepithelial structure. *Histopathology* 1987, 11, 557-565.
- Miller R, Yanagihara ET, Dubrow AA, Lukes RJ. Malignant lymphoma in a Warthin's tumor. Report of a case. Cancer 1982, 50, 2948–2950.
- Banik S, Howell JS, Wright DH. Non-Hodgkin's lymphoma arising in adenolymphoma. A report of two cases. J Pathol 1985, 146, 167-177.
- Hall G, Tesluk H, Baron S. Lymphoma arising in an adenolymphoma. Hum Pathol 1985, 16, 424-427.
- Medeiros LJ, Rizzi R, Lardelli P, Jaffe S. Malignant lymphoma involving a Warthin's tumor: a case with immunophenotypic and gene rearrangement analysis. Hum Pathol 1990, 21, 974-977.
- Albrecth D, Arzt L. Beitrge zur frage der gewebsverirrung. Papillare cystadenome in lymphdrusen. Frankfurt Z Pathol 1910, 4, 47-69.
- Thompson AS, Bryant HC Jr. Histogenesis of papillary cystadenoma of the parotid gland (Warthin's tumor) of the parotid salivary gland. Am J Surg 1950, 26, 807–849.
- Dietert SE. Papillary cystadenoma lymphomatosum (Warthin's tumor) in patients in a general hospital over a 24-year period. Am 7 Clin Pathol 1975, 63, 866-875.
- Allegra SR. Warthin's tumor. A hypersensivity disease? Hum Pathol 1971, 2, 403–420.
- Kotwall CA. Smoking as an etiologic factor in the development of Warthin's tumor of the parotid gland. Am J Surg 1992, 164, 666-667.
- Ogawa Y, Hong S, Toyosawa S, Chang CK, Yagi T. Expression of major histocompatibility complex class II antigens and interleukin-1 by epithelial cells of Warthin's tumor. Cancer 1990, 66, 2111-2117.
- Lindhal G, Hedfors E, Klareskog L, Forsum U. Epithelial HLA-DR expression and T lymphocyte subsites in salivary glands in Sjögren syndrome. Clin Exp Immunol 1985, 61, 475-482.
- Schwartz BD. The human major histocompatibility HLA complex. In Stites DP, Stobo JD, Wells V, eds. Basic and Clinical Immunology. Lange Medical Publication, 1987, 50-65.
- 20. Wikman K, Curman B, Forsum U, et al. Occurrence of Ia

- antigens on tissue of non-lymphoid origin. *Nature* 1978, 276, 711-713.
- 21. Natali PG, Martino CD, Quaranta V, et al. Expression of Ia-likeantigens in normal human lymphoid tissues. *Transplantation* 1981, 31, 75-78.
- Strominger JL. Biology of the human histocompatibility leukocyte antigen (HLA) system and a hypothesis regarding the generation of autoimmune disease. J Clin Invest 1986, 77, 1411–1416.
- Hanafusa T, Pujol-Borrell R, Chiovato L, Russell RGC, Doniach D, Bottazzo GF. Aberrant HLA-DR antigen on thyrocytes in Grave's disease: relevance for autoimmunity. *Lancet* 1983, ii, 1111-1115.
- Bottazzo GF, Pujol-Borrel R, Hanafusa T, Feldman M. Role of the aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. *Lancet* 1983, ii, 1115–1118.
- Fox RI, Pearson G, Vaughan JH. Detection of Epstein-Barr virus-associated antigens and DNA in salivary gland biopsies from patients with Sjögren syndrome. J Immunol 1986, 137, 3162-3168.
- Saito I, Servenius B, Compton T, Fox RI. Detection of Epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjögren syndrome. J Exp Med 1989, 169, 2191-2198.
- 27. Mariette X, Golzan J, Clerc D, Bisson M, Morinet F. Detection of Epstein-Barr virus DNA by *in situ* hybridization and polymerase chain reaction in salivary gland specimens from patients with Sjögren's syndrome. *Am J Med* 1991, 90, 286-294.
- Deacon EM, Matthews JB, Potts AJC, et al. Detection of Epstein Barr virus antigens and DNA in major and minor salivary glands using immunocytochemistry and polymerase chain reaction: possible relationship with Sjögren syndrome. J Pathol 1991, 163, 351-260.
- 29. Tateishi M, Saito I, Yamamoto K, Miyasaka N. Spontaneous production of Epstein-Barr virus by B lymphoblastoid cell lines obtained from patients with Sjögren's syndrome. Possible involvement of a novel strain of Epstein-Barr virus in disease pathogenesis. *Arthritis Rheum* 1993, 36, 827-835.
- Fox RI, Kang HI. Pathogenesis of Sjögren's syndrome. Rheum Dis Clin North Am 1992, 18, 517-538.
- 31. Fox RI, Luppi M, Pisa P, Kangh HI. Potential role of Epstein-Barr virus in Sjögren's syndrome and rheumatoid arthritis. J Rheumathol 1992, suppl 32, 18-24.
- 32. Wolf H, Hus M, Wilmes E. Persistence of Epstein-Barr virus in the parotid gland. *J Virol* 1984, 51, 795-798.
- Thorley-Lawson DA. Basic virologic aspects of Epstein-Barr virus infection. Semin Hematol 1988, 25, 247–260.
- Miller G. Epstein Barr virus: biology, pathogenesis, and medical aspects. In Fields BN, Knipe DM, eds. Virology, 2nd ed. New York, Raven Press, 1990, 1921–1958.
- Zur Hausen H, Schulte-Holthausen HS, Klein G, et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 1970, 228, 1056–1058.
- Weiss LM, Movahed LA, Warnke RA, Sklar J. Detection of EBV genomes in Reed-Sternberg cells of Hodgkin's disease. N Engl J Med 1989, 320, 502-506.
- Morgan DJ, Niederman JC, Miller G, Smith HW, Dowaliby JM. Site of Epstein-Barr virus replication in the oropharynx. Lancet 1979, ii, 1154-1157.
- Sixbey J, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS. Detection of Epstein-Barr virus DNA and RNA in human pharyngeal epithelial cells. N Engl J Med 1984, 310, 1225–1230.
- Gerber P, Nonoyama M, Lucas S, Perlin E, Goldstein LI. Oral excretion of Epstein-Barr virus by healthy subjects and patients with infectious mononucleosis. *Lancet* 1972, i, 988-1989.
- Huang DP, Ng HK, Ho YH, Chan KM. Epstein-Barr virus (EBV)-associated undifferentiated carcinoma of the parotid gland. *Histopathology* 1988, 13, 509-517.
- Saemudsen AK, Albeck H, Hansen JPH. Epstein-Barr virus nasopharyngeal and salivary gland carcinomas in Greenland Eskimos. Br J Cancer 1982, 46, 721-728.

- 42. Raab-Traub N, Rajadurai P, Flynn K, Lanier PA. Epstein-Barr virus infection in carcinoma of the salivary gland. *J Virol* 1991, 65, 7032-7036.
- 43. Gallo O, Santucci M, Calzolari A, Fini Storchi O. Epstein-Barr virus (EBV) infection and undifferentiated carcinoma of the parotid gland in Caucasian subjects. *Acta Otolaryngol (Stockholm)* 1994, 114, 572-575.
- 44. Pflugfelder SC, Crouse AC, Monroy D, Yen M, Rowe M, Atherton SS. Epstein-Barr and the lacrimal gland pathology of Sjögren's syndrome. Am J Pathol 1993, 143, 49-64.
- 45. Weiss LM, Gaffey MJ, Shibata D. Lymphoepithelioma-like carcinoma and its relationship to Epstein-Barr virus. Am J Clin Pathol 1991, 96, 156-158.
- 46. Smith RD. Epstein-Barr virus: a ubiquitous agent that can immortalize cells. *Hum Pathol* 1993, 24, 233-234.
- Gallo O, Santucci M, Calzolari A, Ninu MB, Fini-Storchi O, Bondi R. EBV infection and parotid gland neoplasms. In *The New Frontiers in Otorhinolaryngology in Europe*. Sorrento, Italy, 1992, III. 205–209.
- 48. Santucci M, Gallo O, Calzolari A, Bondi R. Detection of

- Epstein-Barr viral genome in tumor cells of Warthin's tumor of parotid gland. Am J Clin Pathol 1993, 100, 662-665.
- Taira S, Okuda M, Osato T, Mizuno F. Detection of Epstein– Barr virus DNA in salivary gland tumors. Nippon-Jibiinkoka-Gakkai-Kaiho 1992, 95, 860–868.
- Gallo O. Is Warthin's tumor an EBV-related disease? Int J Cancer 1994, 58, 756-757.
- Arnett FC, Bias WB, Reveille JD. Genetic studies in Sjögren's syndrome and systemic lupus erythematosis. J Autoimmunity 1989, 2, 403–413.
- 52 Misko IS, Schmidt C, Honeyman M, et al. Failure of Epstein-Barr virus-specific cytotoxic T-lymphocytes to lyse B cells transformed with the B9:5-8 strain is mapped to an epitope that associates with the HLA-B8 antigen. Clin Exp Immunol 1992, 87, 65-71.
- Cheung WY, Chan AL, Loche SL, et al. Latent sites of Epstein-Barr virus infection. Am J Clin Pathol 1993, 100, 502-506.
- 54. Kassan S, Thomas T, Moutsopoulos HM, et al. Increased risk of lymphoma in sicca syndrome. Ann Intern Med 1978, 89, 888-892.